技術(shù)文章
旋轉(zhuǎn)編碼器
閱讀:362 發(fā)布時間:2014-9-11旋轉(zhuǎn)編碼器是用來測量角度,位移,速度的裝置,光電式旋轉(zhuǎn)編碼器通過光電轉(zhuǎn)換,可將輸出軸的角位移、角速度等機械量轉(zhuǎn)換成相應(yīng)的電脈沖以數(shù)字量輸出(REP)。它分為單路輸出和雙路輸出兩種。技術(shù)參數(shù)主要有每轉(zhuǎn)脈沖數(shù)(幾十個到幾千個都有),和供電電壓等。單路輸出是指旋轉(zhuǎn)編碼器的輸出是一組脈沖,而雙路輸出的輸出兩組A/B相位差90度的脈沖,通過這兩組脈沖不僅可以測量轉(zhuǎn)速,還可以判斷旋轉(zhuǎn)的方向。 編碼器如以信號原理來分可分為 增量脈沖編碼器:SPC 脈沖編碼器:APC 兩者一般都應(yīng)用于速度控制或位置控制系統(tǒng)的檢測元件. 增量型編碼器與型編碼器的區(qū)分
按照工作原理編碼器可分為增量式和式兩類。
增量式編碼器是將位移轉(zhuǎn)換成周期性的電信號,再把這個電信號轉(zhuǎn)變成計數(shù)脈沖,用脈沖的個數(shù)表示位移的大小。式編碼器的每一個位置對應(yīng)一個確定的數(shù)字碼,因此它的示值只與測量的起始和終止位置有關(guān),而與測量的中間過程無關(guān)。
旋轉(zhuǎn)增量式編碼器以轉(zhuǎn)動時輸出脈沖,通過計數(shù)設(shè)備來知道其位置,當(dāng)編碼器不動或停電時,依靠計數(shù)設(shè)備的內(nèi)部記憶來記住位置。這樣,當(dāng)停電后,編碼器不能有任何的移動,當(dāng)來電工作時,編碼器輸出脈沖過程中,也不能有干擾而丟失脈沖,不然,計數(shù)設(shè)備記憶的零點就會偏移,而且這種偏移的量是無從知道的,只有錯誤的生產(chǎn)結(jié)果出現(xiàn)后才能知道。
解決的方法是增加參考點,編碼器每經(jīng)過參考點,將參考位置修正進(jìn)計數(shù)設(shè)備的記憶位置。在參考點以前,是不能保證位置的準(zhǔn)確性的。為此,在工控中就有每次操作先找參考點,開機找零等方法。
比如,打印機掃描儀的定位就是用的增量式編碼器原理,每次開機,我們都能聽到噼哩啪啦的一陣響,它在找參考零點,然后才工作。
這樣的方法對有些工控項目比較麻煩,甚至不允許開機找零(開機后就要知道準(zhǔn)確位置),于是就有了編碼器的出現(xiàn)。
型旋轉(zhuǎn)光電編碼器,因其每一個位置*、抗干擾、無需掉電記憶,已經(jīng)越來越廣泛地應(yīng)用于各種工業(yè)系統(tǒng)中的角度、長度測量和定位控制。
編碼器光碼盤上有許多道刻線,每道刻線依次以2線、4線、8線、16線。。。。。。編排,這樣,在編碼器的每一個位置,通過讀取每道刻線的通、暗,獲得一組從2的零次方到2的n-1次方的*的2進(jìn)制編碼(格雷碼),這就稱為n位編碼器。這樣的編碼器是由碼盤的機械位置決定的,它不受停電、干擾的影響。
編碼器由機械位置決定的每個位置的*性,它無需記憶,無需找參考點,而且不用一直計數(shù),什么時候需要知道位置,什么時候就去讀取它的位置。這樣,編碼器的抗干擾特性、數(shù)據(jù)的可靠性大大提高了。
由于編碼器在定位方面明顯地優(yōu)于增量式編碼器,已經(jīng)越來越多地應(yīng)用于工控定位中。型編碼器因其高精度,輸出位數(shù)較多,如仍用并行輸出,其每一位輸出信號必須確保連接很好,對于較復(fù)雜工況還要隔離,連接電纜芯數(shù)多,由此帶來諸多不便和降低可靠性,因此,編碼器在多位數(shù)輸出型,一般均選用串行輸出或總線型輸出,德國生產(chǎn)的型編碼器串行輸出zui常用的是SSI(同步串行輸出)。
1主要分類
編碼器可按以下方式來分類。
1、按碼盤的刻孔方式不同分類
(1)增量型:就是每轉(zhuǎn)過單位的角度就發(fā)出一個脈沖信號(也有發(fā)正余弦信號,
編碼器(圖1)
然后對其進(jìn)行細(xì)分,斬波出頻率更高的脈沖),通常為A相、B相、Z相輸出,A相、B相為相互延遲1/4周期的脈沖輸出,根據(jù)延遲關(guān)系可以區(qū)別正反轉(zhuǎn),而且通過取A相、B相的上升和下降沿可以進(jìn)行2或4倍頻;Z相為單圈脈沖,即每圈發(fā)出一個脈沖。
(2)值型:就是對應(yīng)一圈,每個基準(zhǔn)的角度發(fā)出一個*與該角度對應(yīng)二進(jìn)制的數(shù)值,通過外部記圈器件可以進(jìn)行多個位置的記錄和測量。
2、按信號的輸出類型分為:電壓輸出、集電極開路輸出、推拉互補輸出和長線驅(qū)動輸出。
3、以編碼器機械安裝形式分類
(1)有軸型:有軸型又可分為夾緊法蘭型、同步法蘭型和伺服安裝型等。
(2)軸套型:軸套型又可分為半空型、全空型和大口徑型等。
4、以編碼器工作原理可分為:光電式、磁電式和觸點電刷式。[1]
工作原理 由一個中心有軸的光電碼盤,其上有環(huán)形通、暗的刻線,有光電發(fā)射和接收器件讀取,獲得四組正弦波信號組合成A、B、C、D,每個正弦波相差90度相位差(相對于一個周波為360度),將C、D信號反向,疊加在A、B兩相上,可增強穩(wěn)定信號;另每轉(zhuǎn)輸出一個Z相脈沖以代表零位參考位。 由于A、B兩相相差90度,可通過比較A相在前還是B相在前,以判別編碼器的正轉(zhuǎn)與反轉(zhuǎn),通過零位脈沖,可獲得編碼器的零位參考位。 編碼器碼盤的材料有玻璃、金屬、塑料,玻璃碼盤是在玻璃上沉積很薄的刻線,其熱穩(wěn)定性好,精度高,金屬碼盤直接以通和不通刻線,不易碎,但由于金屬有一定的厚度,精度就有限制,其熱穩(wěn)定性就要比玻璃的差一個數(shù)量級,塑料碼盤是經(jīng)濟(jì)型的,其成本低,但精度、熱穩(wěn)定性、壽命均要差一些。 分辨率—編碼器以每旋轉(zhuǎn)360度提供多少的通或暗刻線稱為分辨率,也稱解析分度、或直接稱多少線,一般在每轉(zhuǎn)分度5~10000線。
脈沖輸出距離:
內(nèi)密控:
2MHC 20M
2MHT 40M
2MD 150M
的特點
[1]是集光機電技術(shù)于一體的速度位移傳感器。當(dāng)軸帶動光柵盤旋轉(zhuǎn)時,經(jīng)發(fā)光元件發(fā)出的光被光柵盤狹縫切割成斷續(xù)光線,并被接收元件接收產(chǎn)生初始信號。該信號經(jīng)后繼電路處理后,輸出脈沖或代碼信號。其特點是體積小,重量輕,品種多,功能全,頻響高,分辨能力高,力矩小,耗能低,性能穩(wěn)定,可靠使用壽命長等特點。
信號輸出 信號輸出有正弦波(電流或電壓),方波(TTL、HTL),集電極開路(PNP、NPN),推拉式多種形式,其中TTL為長線差分驅(qū)動(對稱A,A-;B,B-;Z,Z-),HTL也稱推拉式、推挽式輸出,編碼器的信號接收設(shè)備接口應(yīng)與編碼器對應(yīng)。 信號連接—編碼器的脈沖信號一般連接計數(shù)器、PLC、計算機,PLC和計算機連接的模塊有低速模塊與高速模塊之分,開關(guān)頻率有低有高。 如單相聯(lián)接,用于單方向計數(shù),單方向測速。 A.B兩相聯(lián)接,用于正反向計數(shù)、判斷正反向和測速。 A、B、Z三相聯(lián)接,用于帶參考位修正的位置測量。 A、A-,B、B-,Z、Z-連接,由于帶有對稱負(fù)信號的連接,電流對于電纜貢獻(xiàn)的電磁場為0,衰減zui小,抗干擾*,可傳輸較遠(yuǎn)的距離。 對于TTL的帶有對稱負(fù)信號輸出的編碼器,信號傳輸距離可達(dá)150米。
由精密器件構(gòu)成,故當(dāng)受到較大的沖擊時,可能會損壞內(nèi)部功能,使用上應(yīng)充分注意。
常用輸出方式匹配方法:以下為連接設(shè)備和編碼器連接情況
(漏型)NPN集電極開路 可以配(源型)PNP集電極開路
(互補,推拉,推挽輸出)同時兼容NPN集電極開路,PNP集電極開路輸出。但是和同樣是(互補,推拉,推挽輸出)不兼容
(TTL,長線,差分輸出)一般用在歐美產(chǎn)品上,電壓為5V
技 術(shù) 術(shù) 語 | 說 明 |
90°相位差二信號和零位信號 | A.B路相位差90°的兩信號和零位信號。 |
UVW信號 | 用來表征相位差120°的3路信號(電角度)關(guān)系。 |
電壓輸出 | NPW型晶體管發(fā)射極接地,集電極帶負(fù)載電阻輸出的電路。 |
集電極開路輸出 | NPW型直接從晶體管的集電極輸出的電路。 |
長線驅(qū)動器輸出 | 長距離輸出用集成電路,信號為正反方向輸出,速度快,抗*力強,還可以檢測電纜的斷線。 |
長線接收器 | 接收由驅(qū)動器所輸出信號的IC。使用時,請注意:長線驅(qū)動器與長線接收器必須匹配。如選取用75113長線驅(qū)動器輸出,應(yīng)使用75115線路接收器接收,如不匹配,將影響使用。 |
互補輸出 | NPN型和PNP型對管的發(fā)射極對接輸出電路。這種電路反應(yīng)速度快,也可以長距離傳送。 |
允許注入電流 | 編碼器單路信號zui大吸收的電流值。 |
輸出電阻 | 輸出電路的內(nèi)部阻抗。 |
zui小負(fù)載阻抗 | 輸出電路所允許的zui小負(fù)載阻抗。 |
允許軸負(fù)載 | 軸所能承受軸向及徑向載荷的能力。 |
準(zhǔn)確度 | 輸出脈沖數(shù)累加得到的回轉(zhuǎn)角與理論回轉(zhuǎn)角之差的二分之一。冠以正負(fù)號。 |
周期誤差 | 輸出脈沖數(shù)周期與理論脈沖數(shù)周期之差。 |
相臨周期誤差 | 相鄰脈沖周期之差。 |
增量式 | 輸出脈沖列或正弦波的周期列的方式。位置是根據(jù)累計而得到的。 |
式 | 把機械位移量用二進(jìn)制碼或格雷碼作為位置而進(jìn)行輸出的方式。 |
正邏輯 | 符號“1”是對應(yīng)輸出電壓“H”的輸出邏輯。 |
負(fù)邏輯 | 符號“1”是對應(yīng)輸出電壓“L”的輸出 |
西門子
s7-200PLC NPN集電極開路輸出、PNP集電極開路輸出的編碼器都可以接。
s7-300PLC 則根據(jù)不同的PLC模板來確定連接編碼器的類型。模板本身輸入為源型,則接NPN集電極開路輸出的編碼器;若模板本身輸入為漏型,則接PNP集電極開路輸出的編碼器;
1、源型(source),電流是從端子流出來的,具PNP晶體管輸出特性;漏型(sink),電流是從端子流進(jìn)去的,具NPN晶體管輸出特性。
所謂“漏型輸入”,是一種由plc內(nèi)部提供輸入信號源,全部輸入信號的一端匯總到輸入的公共連接端com的輸入形式。又稱為“匯點輸入”。輸入傳感器為接近開關(guān)時,只要接近開關(guān)的輸出驅(qū)動力足夠,漏型輸入的plc輸入端就可以直接與npn集電極開路型接近開關(guān)的輸出進(jìn)行連接
所謂“源型輸入”,是一種由外部提供輸入信號電源或使用plc內(nèi)部提供給輸入回路的電源,全部輸入信號為“有源”信號,并獨立輸入plc的輸入連接形式。輸入傳感器為接近開關(guān)時,只要接近開關(guān)的輸出驅(qū)動力足夠,源型輸入的plc輸入端就可以直接與pnp集電極開路型接近開關(guān)的輸出進(jìn)行連接。
2、s7-200plc既可接漏型,也可接源型,而300plc一般是源型,歐美一般是源型,輸入一般用pnp的開關(guān),高電平輸入。而日韓好用漏型 ,一般使用npn型的開關(guān)也就是低電平輸入。
3、源型輸出是指輸出的是直流正極,漏型輸出是指輸出的是直流負(fù)極。所以西門子PLC輸出,既有源型又有漏型輸出,但一般是源型。
4、三菱PLC,輸入既有源型又有漏型,但多為漏型。漏型輸入對應(yīng)接的接近開關(guān)是NPN型。
常見故障
1、編碼器本身故障:是指編碼器本身元器件出現(xiàn)故障,導(dǎo)致其不能產(chǎn)生和輸出正確的波形。這種情況下需更換編碼器或維修其內(nèi)部器件。
2、編碼器連接電纜故障:這種故障出現(xiàn)的幾率 zui高,維修中經(jīng)常遇到,應(yīng)是優(yōu)先考慮的因素。通常為編碼器電纜斷路、短路或接觸不良,這時需更換電纜或接頭。還應(yīng)特別注意是否是由于電纜固定不緊,造成松動引起開焊或斷路,這時需卡緊電纜。
3、編碼器+5V電源下降:是指+5V電源過低, 通常不能低于4.75V,造成過低的原因是供電電源故障或電源傳送電纜阻值偏大而引起損耗,這時需檢修電源或更換電纜。
4、式編碼器電池電壓下降:這種故障通常有含義明確的報警,這時需更換電池,如果參考點位置記憶丟失,還須執(zhí)行重回參考點操作。
5、編碼器電纜屏蔽線未接或脫落:這會引入干擾信號,使波形不穩(wěn)定,影響通信的準(zhǔn)確性,必須保證屏蔽線可靠的焊接及接地。
6、編碼器安裝松動:這種故障會影響位置控制 精度,造成停止和移動中位置偏差量超差,甚至剛一開機即產(chǎn)生伺服系統(tǒng)過載報警,請?zhí)貏e注意。
7、光柵污染 這會使信號輸出幅度下降,必須用脫脂棉沾*輕輕擦除油污。
注意事項
?。?)安裝 安裝時不要給軸施加直接的沖擊。 編碼器軸與機器的連接,應(yīng)使用柔性連接器。在軸上裝連接器時,不要硬壓入。即使使用連接器,因安裝不良,也有可能給軸加上比允許負(fù)荷還大的負(fù)荷,或造成撥芯現(xiàn)象,因此,要特別注意。 軸承壽命與使用條件有關(guān),受軸承荷重的影響特別大。如軸承負(fù)荷比規(guī)定荷重小,可大大延長軸承壽命。 不要將進(jìn)行拆解,這樣做將有損防油和防滴性能。防滴型產(chǎn)品不宜長期浸在水、油中,表面有水、油時應(yīng)擦拭干凈。 cnctechnet.com ?。?)振動 加在上的振動,往往會成為誤脈沖發(fā)生的原因。因此,應(yīng)對設(shè)置場所、安裝場所加以注意。每轉(zhuǎn)發(fā)生的脈沖數(shù)越多,旋轉(zhuǎn)槽圓盤的槽孔間隔越窄,越易受到振動的影響。在低速旋轉(zhuǎn)或停止時,加在軸或本體上的振動使旋轉(zhuǎn)槽圓盤抖動,可能會發(fā)生誤脈沖。 ?。?)關(guān)于配線和連接 誤配線,可能會損壞內(nèi)部回路,故在配線時應(yīng)充分注意: ?、?配線應(yīng)在電源OFF狀態(tài)下進(jìn)行,電源接通時,若輸出線接觸電源,則有時會損壞輸出回路。 ?、?若配線錯誤,則有時會損壞內(nèi)部回路,所以配線時應(yīng)充分注意電源的極性等。 3 若和高壓線、動力線并行配線,則有時會受到感應(yīng)造成誤動作成損壞,所以要分離開另行配線。 ④ 延長電線時,應(yīng)在10m以下。并且由于電線的分布容量,波形的上升、下降時間會較長,有問題時,采用施密特回路等對波形進(jìn)行整形。 ?、?為了避免感應(yīng)噪聲等,要盡量用zui短距離配線。向集成電路輸入時,特別需要注意。 6 電線延長時,因?qū)w電阻及線間電容的影響,波形的上升、下降時間加長,容易產(chǎn)生信號間的干擾(串音),因此應(yīng)用電阻小、線間電容低的電線(雙絞線、屏蔽線)。
對于HTL的帶有對稱負(fù)信號輸出的編碼器,信號傳輸距離可達(dá)300米
用途:
主要用來測速,測位移,測角度。
可以使用在各種測速,測位移,測角度的情況。
常用術(shù)語
■輸出脈沖數(shù)/轉(zhuǎn)
轉(zhuǎn)一圈所輸出的脈沖數(shù)發(fā),對于光學(xué)式,通常與內(nèi)部的光柵的槽數(shù)相同(也可在電路上使輸出脈沖數(shù)增加到槽數(shù)的2倍4倍)。
■分辨率
分辨率表示的主軸旋轉(zhuǎn)一周,讀出位置數(shù)據(jù)的zui大等分?jǐn)?shù)。值型不以脈沖形式輸出,而以代碼形式表示當(dāng)前主軸位置(角度)。與增量型不同,相當(dāng)于增量型的“輸出脈沖/轉(zhuǎn)” 。
■光柵
光學(xué)式,其光柵有金屬和玻璃兩種。如是金屬制的,開有通光孔槽;如是玻璃制的,是在玻璃表面涂了一層遮光膜,在此上面沒有透明線條(槽)。槽數(shù)少的場合,可在金屬圓盤上用沖床加工或腐蝕法開槽。在耐沖擊型編碼器上使用了金屬的光柵,它與金屬制的光柵相比不耐沖擊,因此在使用上請注意,不要將沖擊直接施加于編碼器上。
■zui大響應(yīng)頻率
是在1秒內(nèi)能響應(yīng)的zui大脈沖數(shù)
(例:zui大響應(yīng)頻率為2KHz,即1秒內(nèi)可響應(yīng)2000個脈沖)
公式如下:
zui大響應(yīng)轉(zhuǎn)速(rpm)/60×(脈沖數(shù)/轉(zhuǎn))=輸出頻率Hz
■zui大響應(yīng)轉(zhuǎn)速
是可響應(yīng)的zui高轉(zhuǎn)速,在此轉(zhuǎn)速下發(fā)生的脈沖可響應(yīng)公式如下:
zui大響應(yīng)頻率(Hz)/ (脈沖數(shù)/轉(zhuǎn))×60=軸的轉(zhuǎn)速rpm
■輸出波形
輸出脈沖(信號)的波形。
■輸出信號相位差
二相輸出時,二個輸出脈沖波形的相對的的時間差。
■輸出電壓
指輸出脈沖的電壓。輸出電壓會因輸出電流的變化而有所變化。各系列的輸出電壓請參照輸出電流特性圖
■起動轉(zhuǎn)矩
使處于靜止?fàn)顟B(tài)的編碼器軸旋轉(zhuǎn)必要的力矩。一般情況下運轉(zhuǎn)中的力矩要比起動力矩小。
■軸允許負(fù)荷
表示可加在軸上的zui大負(fù)荷,有徑向和軸向負(fù)荷兩種。徑向負(fù)荷對于軸來說,是垂直方向的,受力與偏心偏角等有關(guān);軸向負(fù)荷對軸來說,是水平方向的,受力與推拉軸的力有關(guān)。這兩個力的大小影響軸的機械壽命
■軸慣性力矩
該值表示旋轉(zhuǎn)軸的慣量和對轉(zhuǎn)速變化的阻力
■轉(zhuǎn)速
該速度指示編碼器的機械載荷限制。如果超出該限制,將對軸承使用壽命產(chǎn)生負(fù)面影響,另外信號也可能中斷。
■格雷碼
格雷碼是數(shù)據(jù),因為是單元距離和循環(huán)碼,所以很安全。每步只有一位變化。數(shù)據(jù)處理時,格雷碼須轉(zhuǎn)化成二進(jìn)制碼。
■工作電流
指通道允許的負(fù)載電流。
■工作溫度
參數(shù)表中提到的數(shù)據(jù)和公差,在此溫度范圍內(nèi)是保證的。如果稍高或稍低,編碼器不會損壞。當(dāng)恢復(fù)工作溫度又能達(dá)到技術(shù)規(guī)范
■工作電壓
編碼器的供電電壓
市場上常用的品牌,產(chǎn)品系列,和型號:
日系產(chǎn)品:
日本內(nèi)密控(nemicon):
日本光洋編碼器(KOYO):
日本歐姆龍編碼器(OMRON):
韓國品牌:
奧托尼克斯(AUTONICS):
國產(chǎn)品牌:
無錫瑞普
長春禹恒